What are the steps involved in the concreting process, explain?
The major steps involved in the process of concreting are as follows:
1. Batching
2. Mixing
3. Transporting and placing of concrete
4. Compacting.
> Batching: The process of measurement of the different materials for the making of concrete is known as batching. batching is usually done in two ways: volume batching and weight batching. In case of volume batching the measurement is done in the form of volume whereas in the case of weight batching it is done by the weight.
> Mixing: In order to create good concrete the mixing of the materials should be first done in dry condition and after it wet condition. The two general methods of mixing are: hand mixing and machine mixing.
> Transportation and placing of concrete: Once the concrete mixture is created it must be transported to its final location. The concrete is placed on form works and should always be dropped on its final location as closely as possible.
> Compaction of concrete: When concrete is placed it can have air bubbles entrapped in it which can lead to the reduction of the strength by 30%. In order to reduce the air bubbles the process of compaction is performed. Compaction is generally performed in two ways: by hand or by the use of vibrators.
1. Batching
2. Mixing
3. Transporting and placing of concrete
4. Compacting.
> Batching: The process of measurement of the different materials for the making of concrete is known as batching. batching is usually done in two ways: volume batching and weight batching. In case of volume batching the measurement is done in the form of volume whereas in the case of weight batching it is done by the weight.
> Mixing: In order to create good concrete the mixing of the materials should be first done in dry condition and after it wet condition. The two general methods of mixing are: hand mixing and machine mixing.
> Transportation and placing of concrete: Once the concrete mixture is created it must be transported to its final location. The concrete is placed on form works and should always be dropped on its final location as closely as possible.
> Compaction of concrete: When concrete is placed it can have air bubbles entrapped in it which can lead to the reduction of the strength by 30%. In order to reduce the air bubbles the process of compaction is performed. Compaction is generally performed in two ways: by hand or by the use of vibrators.
What are the different type of slump test indications?
Slump tests are performed to empirically measure the workability of fresh concrete. It is used to measure the consistency of the concrete. In general there are three different types of slumps that occur in slump tests. They are as follows:
> True Slump
> Shear Slump
> Collapse Slump
True Slump: This type of slump is characterized by the general drop of the concrete mass evenly without visible signs of deterioration or disintegration.
Shear Slump: It indicates that the concrete mix is deficient in cohesion. This type of slump leads to segregation and bleeding. Henceforth in the long run effecting the durability of the concrete.
Collapse Slump: This type of slump is indicates that the mix of concrete is simply too wet. The mix is considered to be harsh and lean.
> True Slump
> Shear Slump
> Collapse Slump
True Slump: This type of slump is characterized by the general drop of the concrete mass evenly without visible signs of deterioration or disintegration.
Shear Slump: It indicates that the concrete mix is deficient in cohesion. This type of slump leads to segregation and bleeding. Henceforth in the long run effecting the durability of the concrete.
Collapse Slump: This type of slump is indicates that the mix of concrete is simply too wet. The mix is considered to be harsh and lean.
Describe briefly the various methods of concrete curing.
Curing is the process of maintaining the moisture and temperature conditions for freshly deployed concrete. This is done for small duration of time to allow the hardening of concrete. The methods that are involved in saving the shrinkage of the concrete includes:
(a) Spraying of water: on walls, and columns can be cured by sprinkling water.
(b) Wet covering of surface: can be cured by using the surface with wet gunny bags or straw
(c) Ponding: the horizontal surfaces including the slab and floors can be cured by stagnating the water.
(d) Steam curing: of pre-fabricated concrete units steam can be cured by passing it over the units that are under closed chambers. It allows faster curing process and results in faster recovery.
(e) Application of curing compounds: compounds having calcium chloride can be applied on curing surface. This keeps the surface wet for a very long time.
(a) Spraying of water: on walls, and columns can be cured by sprinkling water.
(b) Wet covering of surface: can be cured by using the surface with wet gunny bags or straw
(c) Ponding: the horizontal surfaces including the slab and floors can be cured by stagnating the water.
(d) Steam curing: of pre-fabricated concrete units steam can be cured by passing it over the units that are under closed chambers. It allows faster curing process and results in faster recovery.
(e) Application of curing compounds: compounds having calcium chloride can be applied on curing surface. This keeps the surface wet for a very long time.
Why are pull-out tests performed for soil nails?
Pull out tests are performed for primarily the following reasons:
> In order to detect and the verification of the bond strength among the soil and the grout adopted during the design of soil nails. This is considered to be as the primary objective of performing pull out tests for soil nails.
> For the detection of any slippage or occurrence of creeps.
> To detect the elastic and deformations (plastic) of any of the test nails employed. Observations are made during the loading and unloading cycles of the soil nails repetitively.
> To achieve the perfect balance the test nails should always be loaded so that the ultimate soil/grout mixture with an upper limit of 80%.
> In order to detect and the verification of the bond strength among the soil and the grout adopted during the design of soil nails. This is considered to be as the primary objective of performing pull out tests for soil nails.
> For the detection of any slippage or occurrence of creeps.
> To detect the elastic and deformations (plastic) of any of the test nails employed. Observations are made during the loading and unloading cycles of the soil nails repetitively.
> To achieve the perfect balance the test nails should always be loaded so that the ultimate soil/grout mixture with an upper limit of 80%.
What reinforcements are used in the process of prestressing?
The major types of reinforcements used in prestressing are:
> Spalling Reinforcement: The spalling stresses leads to stress behind the loaded area of the anchor blocks. This results in the breaking off of the surface concrete. The most likely causes of such types of stresses are Poisson`s effects strain interoperability or by the stress trajectory shapes.
> Equilibrium reinforcements: This type of reinforcements are required where several anchorages exist where the prestressing loads are applied in a sequential manner.
> Bursting Reinforcements: These kinds of stresses occur in cases where the stress trajectories are concave towards the line of action of load. In order to reduce such stresses reinforcements in the form of bursting is required.
> Spalling Reinforcement: The spalling stresses leads to stress behind the loaded area of the anchor blocks. This results in the breaking off of the surface concrete. The most likely causes of such types of stresses are Poisson`s effects strain interoperability or by the stress trajectory shapes.
> Equilibrium reinforcements: This type of reinforcements are required where several anchorages exist where the prestressing loads are applied in a sequential manner.
> Bursting Reinforcements: These kinds of stresses occur in cases where the stress trajectories are concave towards the line of action of load. In order to reduce such stresses reinforcements in the form of bursting is required.
Why should pumping be not used in case of concreting works?
During the pumping operation the pump exerted pressure must overcome any friction between the pumping pipes and the concrete, also the weight of the concrete and the pressure head when the concrete is placed above the pumps. Since only water is pump able, all the pressure generated is by the water that is present in the concrete. The major problem due to pumping are segregation effects and bleeding. In order to rectify and reduce these effects, generally the proportion of the cement is increased in order to increase the cohesion , which leads to the reduction of segregation and bleeding. Also if a proper selection of the aggregate grading can vastly improve the concrete pump ability.
THANKS CAREERRIDE
Concrete Blocks and Sizes
THANKS CAREERRIDE
Concrete Blocks and Sizes
No comments:
Post a Comment